

What is a Xeriscape

Landscape design centered around saving water and minimizing irrigation

Native/drought tolerant plants

Rock gardens

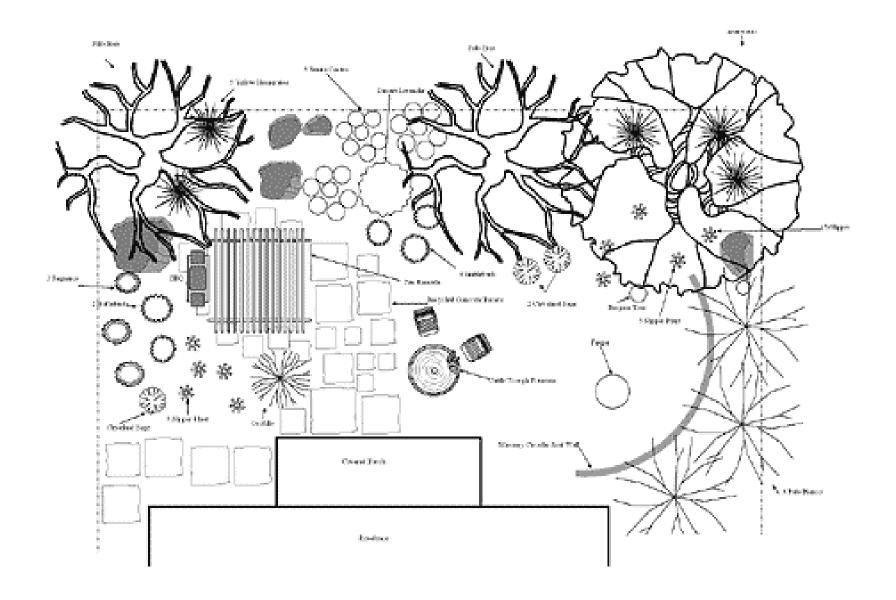
Minimizing sources of high irrigation

Why should xeriscaping be considered:

Up to 60% of household water use dedicated to irrigation

Less water devoted to landscaping

Promotes cleaner groundwater and soil health



What is a Xeriscape

- 7 principles of xeriscaping help guide landscapers
 - Planning and design
 - Soil analysis and prep
 - Practical turf
 - Appropriate plant selection
 - Efficient irrigation
 - Use of mulches
 - Appropriate maintenance

Xeriscape Planning and Design

- Smart design forms the baseline for any water-saving plan
- Sketch the yard layout. Label structures, trees, grass areas, etc.
- Major considerations for planning:
 - Yard usage
 - investment to maintenance
 - Budget
 - Water-intensive areas
- Design a yard that is both functional and low in water requirements

Soil Analysis and Prep

- Test your soil for nutrient load and organic matter
- Organic material provides micronutrients, improves water retention in sandy soil
- Till 4-6 inches of organic material into the soil well before planting
 - Shredded pine bark
 - Compost
 - Leaf material

Parker County

Laboratory Number: 512036 Customer Sample ID: Front Crop Grown: LAWN

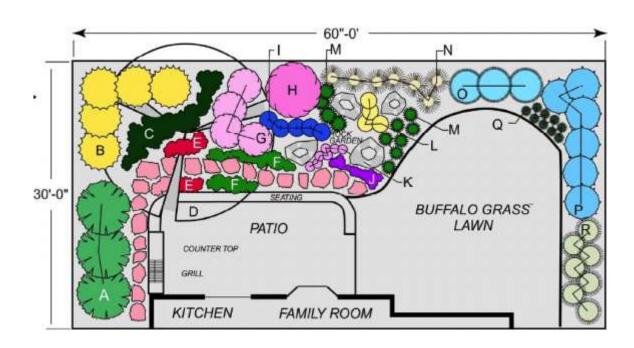
Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 6/16/2018

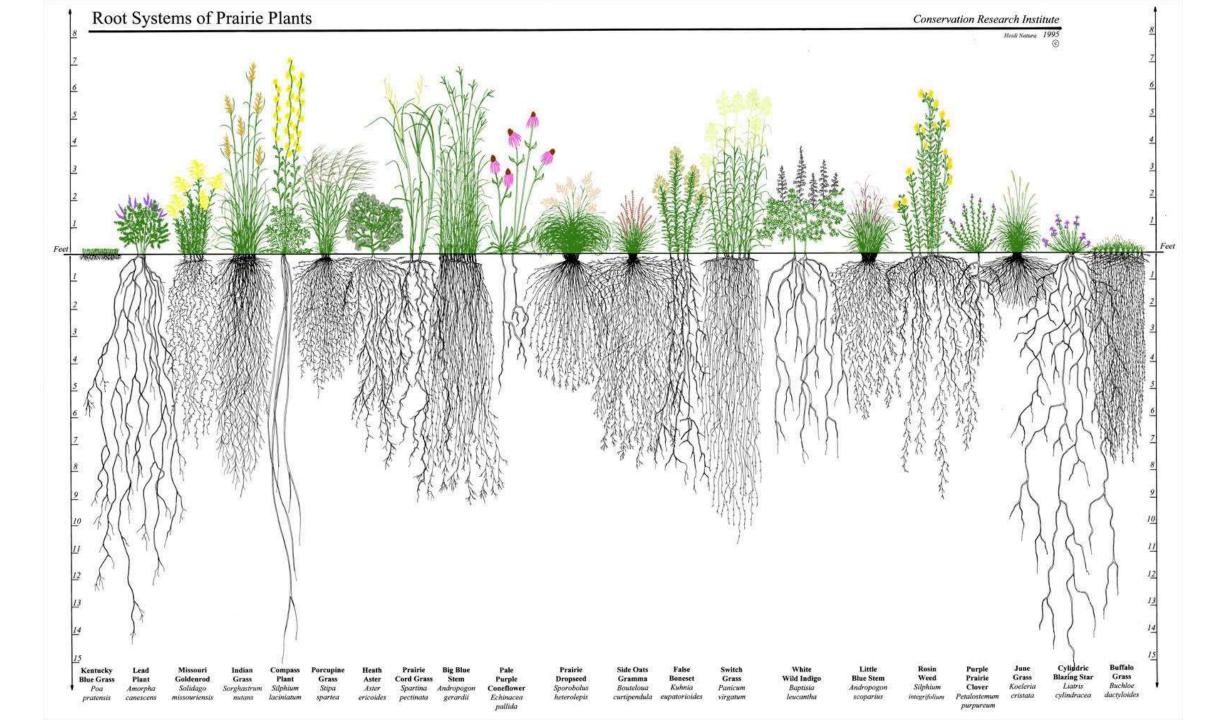

Printed on: 6/25/2018 Area Represented: 2500 sqft

pH Conductivity Nitrate-N	7.9			ExLow VLow Low Mod High VHigh	Excess.
TENTO 14 FEB 12 1 FOR 10 COMP.		(6.2)	Ţ	Mod. Alkaline	
Nitrate-N	274	(-)	umho/cm	None CL*	Fertilizer Recommended
	11	(-)	ppm**		0.4 lbs N/1000sqft
Phosphorus	16	(50)	ppm	jununujununujunut	2 lbs P2O5/1000sqft
Potassium	221	(175)	ppm) មានប្រជាពលរដ្ឋមានបានប្រជាពលរដ្ឋមន្ត្រី	0 lbs K20/1000sqft
Calcium 1	1,937	(180)	ppm		0 lbs Ca/1000sqft
Magnesium	215	(50)	ppm	jamanjamanjamanjamanjan	0 lbs Mg/1000sgft
Sulfur	69	(13)	ppm	ļamana ķaramarijaman piramarijaman karaman kar	0 lbs S/1000sqft
Sodium	229	(-)	ppm	jamanijaanajaa	
Iron					
Zinc					
Manganese					
Copper					
Boron					
Limestone Requirement					0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Thinking Practical Turf Areas

- Turf is the most water intensive area of a yard
- Most xeriscapes minimize/eliminate turf areas
- Be smart when implementing turf areas
 - Use drought tolerant grasses
 - Keep shapes regular irregular shapes are harder to irrigate
 - Avoid making turf areas too small

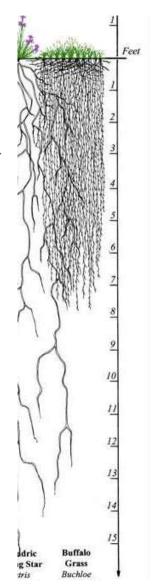


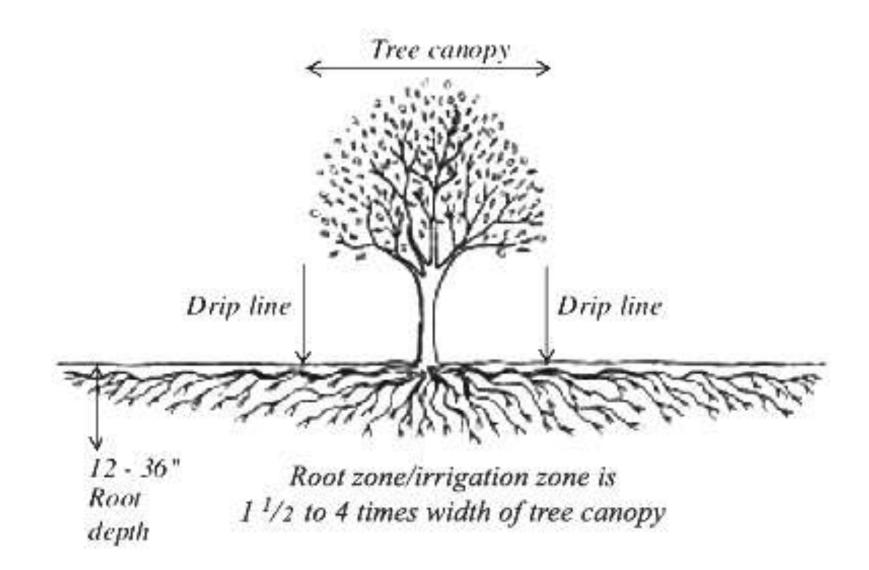
Plant Selection

- Plants should be well adapted to Bastrop County's soil and climate
 - Sandy loam soil
 - 36 inches of rain
- Plants should be able to withstand long periods without rain
- the best plants to use are natives!
- Best plants to use for Bastrop County:
- Broadleaf flowers:
 - Black-eyed susan
 - Sunflower
 - Indian Blanket
 - Prairie Coneflower
 - Bluebonnet
 - Indian Paintbrush

- Brush/shrubs:
 - Pricklypear
 - Yucca
 - Texas sage
 - Dwarf yaupon
 - Mountain laurel
 - Lantana

- Trees
 - Oaks
 - Redbud
 - Arizona Cypress




Efficient Watering

- Most water applied to landscapes does not get absorbed
 - Runoff
 - Evaporation
 - Overapplication
- Overapplication leads to leached nutrients and groundwater pollution
- Watering may still be needed in xeriscapes
 - Can still be beneficial if properly practiced

Efficient Watering

- Watering Lawns
 - Infrequent, but thorough!
 - Influence a deep, well-rooted lawn to improve water efficiency
 - Apply 1 inch of water per sq. ft. quickly, without runoff
 - When to water?
 - When the grass needs it
 - Signs of drought stress: discoloration, wilting
- Watering trees and shrubs
 - Water frequently until well rooted, then shorten to once-a-month
 - Where to water:

Efficient Watering

- Watering Lawns
 - Infrequent, but thorough!
 - Influence a deep, well-rooted lawn to improve water efficiency
 - Apply 1 inch of water per sq. ft. quickly, without runoff
 - When to water?
 - When the grass needs it
 - Signs of drought stress: discoloration, wilting
- Watering trees and shrubs
 - Water frequently until well rooted, then shorten to once-a-month
 - Where to water:
 - Apply at the dripline of the tree/shrub. Saturate 8 10 inches deep
 - Move around the dripline

Efficient Watering

- Irrigation system management:
 - Should provide just enough water without waste
 - Different parts of the yard need different amounts of water.
- Irrigation zoning can allow for precise irrigating in different areas
 - Group zones according to water intensity
 - Utilize different irrigation systems

- Sprinkler irrigation:
 - Most common system used by homeowners
 - Require little maintenance. Apply large amounts of water very quickly
 - Set up: be strategic.
 - Avoid coverage of impervious surfaces
 - Avoid overlapping coverage
 - Adjust heads to spray larger droplets
- Drip irrigation:
 - More water efficient, but higher maintenance
 - Low pressure flow directly to the plant roots
 - Little risk of loss to runoff and evaporation

Conserving Ground Moisture

Use mulch to limit surface exposure to the sun

Organic mulches:

Wood chips

Pine bark

Compost

Inorganic mulches

Lava rocks

Flagstone

Permeable plastics

Trees and shrubs can also reduce evaporation risk

Require more water

Proper Maintenance

- Effectively maintaining landscapes will ensure a xeriscape functions as intended.
- Proper mowing to encourage root development
 - 3 inches for native grass/st. Augustine grass
 - 1 inch for bermudagrass
- Fertilize periodically according to recommendations
- Maintain irrigation systems to ensure efficient operation
- Control weeds to reduce water competition

Contact:

Dakota Kempken – CEA: Ag/Natural Resources

Dakota.Kempken@ag.tamu.edu 512-581-7186